Int. J. Heat Muass Transfer.

Vol. Y. pp 702-704 Pergamon Press 1966. Printed in Great Britain

HEAT CONDUCTION WITH SOLIDIFICATION AND A CONVECTIVE BOUNDARY

Parlat St attantTal

CONDITI

N AT THE FREEZING FRONT

CHARLES LAPADULA* and WHEELER K. MUELLERY
Department of Mechanical Engineering, New York University

(Received | July 1965 and in revised form 20 December 1965)

INTRODUCTION

THE PHENOMENON of heat transfer from a surface at a tem-
perature below the fusion temperature of the surrounding
medium has received much attention in the literature. How-
ever almost all analyses of such problems, involving the
formation of a solid on a cold surface., have ignored the
effects of convection.

Recently Libby and Chen [1] have presented an approxi-
mate solution which does take into consideration the effects
of convective heating. Their analysis, based on Goodman'’s
integral method [2], leads to a nonlinear second-order ordin-
ary differential equation relating H, the dimensionless
thickness of the deposited solid layer, to dimensionless time
7. This equation is then solved numerically for a particular
set of the parameters that characterize the problem.

An alternate approximate technique which is applicable
to this problem has been developed by Biot [3, 4]. Using
Biot’s technique a much simpler differential equation is
obtained relating H and . This equation can be solved ex-
plicitly and for the particular case presented by Libby and
Chen the two solutions are indistinguishable. Since the solu-
tion obtained following Biot’s procedure gives a simple
formula which is valid for all values of the parameters in-
volved and since it eliminates the need for a computer, it is
given here.

ANALYSIS

Consider a flat plate immersed in an infinite fluid initially
at a uniform temperature. With respect to the coordinate
system shown in Fig. 1, for t > Olet T(y, 0, 1) = Tx = con-
stant < T, = the fusion temperature of the medium. In this
situation a solid is deposited on the plate and if the fluid
flows over the plate in the positive y-direction due to either
a forced external flow or natural convection (if the plate is
vertical), the fluid—solid interface will be as shown in Fig. 1.
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If the thickness of the solid is denoted by A(y, 1) then
Ty hot) =T,

and due to the change of phase at the interface

aT .
== h,t) = q. + pLh

Z

QW

where ¢, is the rate per unit area normal to the z-direction at
which heat is transferred to the solid by convection.

Following Libby and Chen it is assumed that conduction
in the solid may be treated as one-dimensional so that the
energy equation becomes

ATi0t = o 2T)322

where it has been assumed that «, the thermal diffusivity of
the deposit, is constant. It is also argued in reference [1]
that

4 = qc.o + h
where n is a constant and ¢, ¢ = ¢, ol}).

Thus the problem as formulated by Libby and Chen leads
to the mathematical system:

TRt = a 2Ti0z2 <z < h (h
Ty, 0,1) = Ty (la)
T ho=T; {iby
¢ X
k= ht=q. o+ n+ plih {1
[
Following Biot, O, a heat flux variable. is defined by
I
T
Q= S»k—; dr (H
cZ
8]
50 that
aQ/ét = —k ¢T/éz {2a)
fQ/ez = —padT — Ty) = —pc[T(y. 2. 00 — Ty 2. 01] (2by
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Schematic representation of the coordinate
system and the frozen deposit.

Fig. 1.

If Q is written as a function Q(q,, .. ., q,; ¥, z, t) of generalized
coordinates q,, . . ., g, it is easily verified that for this par-
ticular case Biot’s variational equations can be written in

Defining
z

¢= Moy

0 =T,/Ty, L =oan+ pL)kT,;

and satisfying the boundary conditions for Q with a second-
order polynomial in ¢

0 =g ) + (00 ¢ + 9,00, 1) &
it is found that

kTgh
o

Q= —q,o — [6L + 306 - )¢ - 1] @

in which h(y, t) is the only unknown generalized coordinate.

the form Substituting equation (4) into (3) and defining
I3
10Q d 0Q o (@ aQ éQ hq. o, 6 —1
—££+£— %0 dz=—Q—g H= q’o, T = at(g. o/kTi)?, =
o Ot 0q, 0z Oq, \ 0z 0z 0q,o kT oL
0
k=1,..., n (3) the following equation is obtained for H:
In terms of Q the boundary conditions are dH
AH— +BH=C (5)
o0 dr
;(y, 0,0) = —pcTg — Tp) (3a)
E in which
Z_g G ht) = 0 (3b) =2 + 10n + 15, B = 5(n + 3)/0L,
C = 5p{n + 3).
aQ P
o 0 h D) = 4.0 = (m + pL) (30) Equation (5) can be integrated to give
:lvsh;re the initial temperature of the solid, T, has been taken t = - 0)fn) [ Ht®-Dh (l __H )] ©
T 0-1
-0
0-8
/—"-—-
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Fi1G. 2. Approximate solution for small time.
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where
27+ Wy -~ 13

) = e
fln Snin + 3)

It is easily shown that equation (6) and the previous solu-
tion [1] both are in agreement with exact solutions for the
limiting cases of © — 0 and t - » . Moreover for the par-
ticular example presented in reference [ 17, the results of the
two approximate solutions are indistinguishable over the
entire range of t

For r — 0 it would be expected on physical grounds that
convective currents could be ignored. In this case the cxact
solution [5] is given by
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where the constant b must be found from the transcenden il
equation
hexp [h*]erfh = 1:77i: 0= e
For v — 1), equation (6) can be written as
H = [2tfin)] 10a)
Thus for © — 0, equation (6a) gives the approximaiion
b = 4 1H) i
where 7 15 set equal to zero since convection is ignored in
the classical solution.
For v - ».¢hict, ¢T;ct — 0 so that from equations (1}
and (1) it 1s easily verified that for this limiting casc i »

H = 2b/t ) — 1. Equations (7) and (6) are plotted in Figs. 2 and 3
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F1G. 3. Thickness of the deposit at a fixed position along the flat plate.
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